必修二诱导公式主要包括以下内容,综合多个版本教材整理如下:
$2kpi + alpha$($k in mathbb{Z}$)
$sin(2kpi + alpha) = sinalpha$
$cos(2kpi + alpha) = cosalpha$
$tan(2kpi + alpha) = tanalpha$
$cot(2kpi + alpha) = cotalpha$
$- alpha$
$sin(-alpha) = -sinalpha$
$cos(-alpha) = cosalpha$
$tan(-alpha) = -tanalpha$
$cot(-alpha) = -cotalpha$
$pi + alpha$
$sin(pi + alpha) = -sinalpha$
$cos(pi + alpha) = -cosalpha$
$tan(pi + alpha) = tanalpha$
$cot(pi + alpha) = cotalpha$
$pi - alpha$
$sin(pi - alpha) = sinalpha$
$cos(pi - alpha) = -cosalpha$
$tan(pi - alpha) = -tanalpha$
$cot(pi - alpha) = -cotalpha$
$frac{pi}{2} + alpha$
$sinleft(frac{pi}{2} + alpharight) = cosalpha$
$cosleft(frac{pi}{2} + alpharight) = -sinalpha$
$tanleft(frac{pi}{2} + alpharight) = -cotalpha$
$cotleft(frac{pi}{2} + alpharight) = -tanalpha$
$frac{pi}{2} - alpha$
$sinleft(frac{pi}{2} - alpharight) = cosalpha$
$cosleft(frac{pi}{2} - alpharight) = sinalpha$
$tanleft(frac{pi}{2} - alpharight) = cotalpha$
$cotleft(frac{pi}{2} - alpharight) = tanalpha$
化简 :$sin(2040^circ) = sin(5 times 360^circ + 240^circ) = sin(240^circ) = -sin(60^circ) = -frac{sqrt{3}}{2}$
求值 :$cos420^circ = cos(360^circ + 60^circ) = cos60^circ = frac{1}{2}$
公式中的角度需在$0$到$2pi$范围内化简后再计算
诱导公式可通过单位圆和三角函数线理解
以上公式可通过对称性和周期性推导得出,建议结合具体题目类型进行练习以加深理解。